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Abstract--predictions of the macroscopic thermal contact resistance have been severely restricted because 
the macroscopic contact area between finite members could not be determined. A new method of solution 
to this contact problem in elasticity is developed which is applicable to a wide variety of geometries and 
boundary conditions. A physical lum~d-p~ameter model is employed from which the finite difference 
equations in terms of displacement are derived. Calculations using this method indicate that large errors 
in the prediction of the thermal contact resistance can result if solutions for bodies of infinite extent are 
employed for finite regions of interest. Especially large errors may occur if the members are thin. The 
calculations indicate that the maximum deviation from flatness is insufficient for an accurate prediction 
of the macroscopic contact resistance. The form of the large scale surface geometry must also be considered. 

NOMENCLATURE R, 

radius of the contact area ; W 
radius of the cylinder ; % 
defined by equation (4); Z, 

radial displacement ; 
axial displacement ; 
constriction ratio, x = u/b ; 
axial coordinate. 

flatness deviation ; 
modulus of elasticity ; 
function describing the contact sur- 
face (see Fig. 1) ; 
dimensionless conductance ; 
axial node index ; 
radial node index ; 
number of nodes along line (0, J), 
r’ < x (see Fig. 3) ; 
dimensionless cylinder length ; 
cylinder length ; 
number of axial nodes ; 
exponent in the function [f(br’)/d] = 

Greek symbols 

YI grid spacing ratio, y = Ar/Az ; 

Y IT3 shear strain ; 

6, axial strain ; 

ii, 

defined by < = @b/Ed) ; 
elastic conformity modulus, 

i, = (p&W ; 
8, polar angle ; 
4 11, defined by equation (2); 
v, Poisson’s ratio ; 

0, direct stress ; 
z rz1 shear stress. 

,N. r , Superscripts 
number of radial nodes ; 

, dimensionless quantities. 
load ; 
contact load ; 1. INTRODUCTION 
pressure ; THE ADDITIONAL resistance to heat flow at the 
contact pressure ; interface between metallic members in contact 
dimensionless contact resistance ; has been the object of much study. Carfagno [I] 
radial coordinate ; conducted a review of the literature on thermal 
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contact resistance and divided existing theories 
into two categories. The first are theories based 
on models which neglect relatively large-scale 
waviness of surfaces. The surfaces are assumed 
to be rough; but nominally flat. Examples are 
models presented by Cetinkale and Fishenden 
[2], Mikic and Rohsenow [3], and Laming [4]. 
The second category is the macroscopic con- 
striction theory, initially presented by Clausing 
and Chao [5, 61. This model neglects surface 
roughness to concentrate on the large scale 
surface waviness and deviation from flatness. 
They concluded that for many surfaces com- 
monly encountered in engineering practice, 
macroscopic influences appear to be dominant 
when compared with microscopic effects, if 
thick surface films are not present. This paper 
applies the macroscopic approach to the case 
where no conductive fluid is present at the 
surface interface. 

The determination of the additional tem- 
perature drop due to the presence of a constric- 
tion divides naturally into two parts: (i) given 
the load, what is the macroscopic contact area? 
and, (ii) given the macroscopic contact area, 
what is the constriction resistance’! The conduc- 
tion problem associated with Part (ii) has 
received the most attention. A solution by 
Roess [7] which is subject to certain geometric 
limitations has been successfully employed. The 
solution was also independently obtained by 
Mikic [3]. This particular axisymmetric con- 
duction problem has defied exact analytic 
solution due to the mixed boundary conditions 
which are involved. Clausing [S], however, 
removed some of the previous restrictions using 
a finite difference approach. An analysis of the 
conduction problem associated with multiple 
contacts is given by Cooper et al. [9]. Other 
investigators have studied two dimensional 
thermal constrictions in a plane geometry 
[lo, 111. 

The first part, the prediction of the macro- 
scopic contact area, is of fundamental impor- 
tance in the calculation of the contact resistance. 
The understanding of this portion of the problem 

lags behind that of the conduction problem 
due to the complexity of the associated boundary 
value problem in elasticity. The model proposed 
by Clausing and Chao employed two elastic 
cylinders with smooth spherical caps. They 
assumed that the macroscopic contact area is 
equal to the contact area formed between two 
spheres whose radii are equal to the radii of the 
spherical caps of the cylinders. The solution of 
this classical elasticity problem was first given 
by Hertz [ 121 and may be expressed in the form : 

a = K(P,)” 

where a is the contact radius, P, is the compres- 
sive force and K is a constant dependent upon 
the material and geometry of the contact 
surfaces. This appears to be the only method 
previously employed to calculate the macro- 
scopic contact area. (Much study has, however, 
been devoted to the prediction of the micro- 
scopic contact area. This aspect of the problem 
is discussed by Greenwood [ 131. An extension 
of the Hertz analysis to the case of rough 
spheres is also provided by Greenwood and 
Tripp [ 141.) 

Although the Hertz equation has proven 
useful, the applicability is restricted. (i) The 
derivation of the Hertz solution is based on a 
geometry of infinite extent. The influence of the 
nearby load-free sides of the cylinder will in- 
troduce error if it is used for large contact areas. 
(ii) When the cylinder length is small, the Hertz 
solution is invalid for similar reasons. This is a 
severe restriction since many of the members 
encountered in actual applications are thin. 
(iii) The axisymmetric surface profile of the cap 
of the cylinder is restricted to a spherical 
shape. The method fails if the initial contact is 
at the outer radius of the cylinder. 

The contact problem of the theory of elasticity 
has been studied extensively. The contributors 
include the Russian authors Muskhelishvili 
[15], Shtaerman [16], and Rostovtsev [17]. 
Extensions of the Hertz theory are provided by 
Mindlin [18], Poritsky [19], and Smith and 
Liu [20]. Much study has also been devoted to 
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the punch problem wherein bodies of various 
shapes are pressed into contact with elastic 
half-spaces. A discussion of the mechanism of 
the deformation of materials by wedges, which 
includes both elastic and plastic effects, is given 
by Hirst and Howse [21]. All of these authors 
consider the stresses in regions of infinite extent. 
The common assumption is that the contact 
area is small compared to the other dimensions 
of the body. An exception is the work of Sliter 
[22]. He attempted unsuccessfully to apply the 
method of point matching to the contact of a 
plane region bounded by three per~ndieular 
straight lines and a fourth slightly curved line. 
The in~uence of the nearby load-free sides of the 
plane region was considered. A discussion of this 
attempt is given by McNary [23] + 

The object of the paper is two-fold. (i) A more 
general method is presented for the calculation 
of the axial contact area between elastic cylinders 
which have axisymmetric end surface profiles. 
The method is applicable for large contact 
areas, short cylinder lengths and arbitrary 
axisy~etric loading. The surface profile is 
arbitrary provided a single contact region 
results. (ii) The influence of some of the above 
mentioned factors on the thermal contact 
resistance is calculated. Induded is the effect 
of thin members and the effect of the large 
scale surface waviness for a given flatness 
deviation. 

2. FORMULATION OF THE PROBLEM 

The cross section of a solid cylinder, which is 
composed of an elastic, isotropic material of 
constant properties, is shown in contact with a 
rigid half space in Fig, 1. The result for this case 
is the same as if two identical cylinders were 
pressed together. The cross section is symmetric 
about the z axis and is bounded at the bottom 
by the curved surface z =f(r). The form off(r) 
can be general if conditions are such that the 
requirement of one contact region is met. The 
number of contact regions is influenced by the 
type of loading, the magnitude of the load, and 
the cylinder length, as well as the function f(r). 

Unfortunately, real surfaces present a wide 
variety of possibii~ties for the function f(r). 
Results will be presented for f(r) cc r’ where 
hJ = I,2 or 3. The function rz allows a compari- 
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.?=0/b 

FIG. Geometry of the axisymmetric stress problem. 

son with the Hertz solution. The other two 
cases illustrate the effect of changing the general 
shape of the surface profile. The applied 
pressure pC is assumed to be uniform. This 
pressure is the apparent contact pressure. 
Thermoelastic effects are omitted. 

For the functions considered, the maximum 
value of f(r) occurs when r is equal to the 
cylinder radius b. This maximum value will be 
called the flatness deviation d. The ratio of the 
radius of the contact area, ‘a’, to the radius of 
the contacting members, b, is an important 
parameter which indicates the degree of the 
constriction in the heat flow path. This quantity 
is called the constriction ratio x. A dimensionless 
cylinder length L is formed by the ratio, L = l/b, 
where 1 is the cylinder length. 

It is assumed t.hat the flatness deviation is 
small compared to the other dimensions of the 
body. The specimens used in the thermal contact 
resistance experiments of [S] have a one-in. 
dia. and a typical flatness deviation of 80 u in. 
Because the flatness deviation is several orders 
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of magnitude smalfer than the other dimensions, 
the boundary conditions which exist along the 
curve$(r) may be imposed along the line z = 0. 

Attempts at analytic solution to either the 
thermal constriction problem or the isothermal 
elasticity problem have achieved little success 
largely because of the mixed boundary condi- 
tions along the line z = 0. A finite difference 
numerical technique is then a logical approach. 
Although it seems natural to consider the 
pressure PC as the known and the contact 
ratio x as the unknown, the reverse procedure 
is more tractable. The method of solution yields 
linear algebraic equations in terms of displace- 
ment. These equations vary depending upon 
what node, or point, is under consideration. 
Since the boundary conditions on the lower end 
are mixed, two general types of nodes result, 
one for I < a and one for r > a. It is extremely 
inconvenient when employing finite differences 
not to know where one type ends and the other 

CF@ are the normal stresses: r,, is the shear 
stress ; and 

vE 

d = (1; v)(l - 2v) 

E (2) 
k = Tj(--_tyj. 

E is the modulus of elasticity and 1’ is Poisson’s 
ratio. To introduce dimensionless quantities, 
we normalize by the flatness deviation d, the 
cylinder radius b, and the pressure p. 

M’ = @d 

t.4’ = U/d 

r’ = rib 

z’ = qb 

L = l/b 

(3) 

type begins. Thus .Y is considered as the known 
quantity and PC is determined. 

The following notations are also convenient : 

The partial differential equations which apply 
in the interior of the region and the stress 
relations in terms of displacements are given 
below [12] : 

c, = ;li(A + 2/i) 

c, = /L/(1 + 2jf) 14) 

The partial differential equations in dimen- 
sionless form may be obtained from equation 
(1) by replacing u, w, r and z with their respective 
dimensionless counterparts. The dimensionless 
relations between stress and displacement and 
the boundary conditions in dimensionless form 
are given below. 

(2 + 2p)d ad Ad ad u' ~~~~~_+~~~~ 
P b azl ( ) pb W r’ 

In these equations u is the radiat displace- 
ment ; w is the axiaf displa~ment ; a,, CT, and 
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The boundary conditions on the sides are : 

oi(l, z’) = 0 

&(l, z’) = 0 1 
0 < z’ < L. (6) 

The boundary conditions on the upper end are : 

ay, L) = - 1 

&(r’, L) = 0 1 
0 <r’ < 1. (7) 

The boundary conditions on the lower end are : 

o;(r’, 0) < 0 

Ur(r’, 0) = -f(br’)/d 1 
O<r’<x 

a:(r’, 0) = 0 x<r’<l (8) 

$,(r’, 0) = 0 O<r’<l 

Liijt a:(r’, 0) = 0. (9) 

Equation (9) requires additional discussion. 
Let us consider that the radius a is fixed and 
that a unifcrm pressure p, not necessarily equal 
to p,, is applied to the cylinder. Let the function 
f(r) be as previously described. If the pressure 
p were zero, a self-equilibrant system of normal 
stresses along the contact surface would be 
required to satisfy the contact condition for 
0 < r < a. This would require compression 
over a portion of the contact region and tension 
over the remainder. The tensile forces within 
the contact region would become larger as the 
point r = a is approached. If the pressure p is 
some small positive value, the maximum tensile 
stress is reduced. As the pressure p is further 
increased, a value is reached at which cz(r, 0) for 
the interval 0 < r < a is compressive in the 
entire interval and the stress at r = a is zero. 
Thus, for some value of p the stress o&,0) is 
zero. This is the desired value of the load, pc. 
Further increases in p cause a finite compressive 
stress at r = a. The need for equation (9) is 
now clear. 

Let the dimensionless parameter i be defined 
by the equation 

[= & 
Ed’ 

When p equals pe, let [ equal CC. This quantity 
is the elastic conformity modulus. 

3. DERIVATION OF THE FINITE DIFFERENCE 
EQUATIONS 

The finite difference equations for the dis- 
placements u and w are derived from a physical 
model. The model is composed of a system of 
discrete elements of lumped masses and springs, 
in the arrangement shown in Fig. 2. The network 
consists of alternating u rows and w rows. The 
points at which the radial displacements u are 
defined are shown as circles ; points of definition 
of the axial displacements w are shown as x’s. 
Along a u row only the displacement u and 

Plan view 

Seciion a1 8 = 0 

FIG. 2. Axisymmetric lumped-parameter model in cylindrical 
coordinates. 

only the normal stresses (T=, 0, and (TV are defined. 
Similarly, along a w row, only the displacement 
w and only the shear stress r,, are defined. 
The points of definition of displacement also 
represent points of concentration of mass. The 
forces which act on these mass points are 
represented by springs. The springs locate 
points at which stresses must be defined. Both 



1490 ORLO MCNARY 

mass points and stress points are ordered by 
the indices i (which increases in the positive z 
direction) and j (increases in the positive r 
direction). 

The network is divided_mto alternating types 
of rows so that the items a2 w/ar az and a2uiar az, 
which appear in the radial and axial equilibrium 
equations, respectively, may be represented with 
greater accuracy. In a given displacement net- 
work, the strains may be defined in terms of the 
displacements in several ways. The definition 
of the strains and the selection of a particular 
network are two interdependent factors which 
must be considered simultaneously if economy 
of computational effort is to be achieved. Some 
alternate methods of formulating the network 
and of defining the strains are given in [23]. 

The derivation of the difference equations in 
terms of displacements, for the interior and all 
boundary nodes, consists of the following steps. 
(i) Elements of mass are placed in static equi- 
librium using the stresses and the appropriate 
areas over which they act. (ii) The stresses are 
eliminated using the classical stress-strain rela- 
tionships. (iii) The strains are defined in terms 
of the u and w displacements. When the strains 
are substituted the final difference equation 
results. 

The equations which apply in the interior 
will now be derived. Consider the forces which 
act on the element (i, j). The sides of this element 
are 2Ar and 2Az and the subtended angle is 
A8/2. A force balance in the radial direction 
gives the following result. 

o,(i,j + 1) kj+l :2*z) 

--0,(&j- 1)(,j-1y2Az) 

+ [s,,(i + 1, j) - z,,(i - 1, j)] 

- a,(i,j) 
> 

= 0. 

This reduces to : 

+ o,(i,j + 1) - + gr(i, j - 1) 
J J 

+ y[Ui + Lj) - t,,(i - Lj)l 

2Ar 
- 7 oe(i, j) = 0 (10) 

J 

where y = ArjAz. 
The preceding operation places the mass 

represented by the element (i, j) in equilibrium 
in the radial direction. This mass must also be 
placed in equilibrium in the axial direction. The 
latter operation cannot be accomplished directly 
because the stresses which act on the element 
(i, j) in the axial direction are undefined. For 
example, at point (i + 1, j) in Fig. 2 the stress oZ 
is undefined ; T,, is the only stress which is 
defined at the location (i + 1,j). The necessary 
stresses are undefined as a direct consequence of 
dividing the network into alternating types of 
rows. 

However, from Fig. 2 it is noted that all the 
stresses necessary to place the element (i + 1, 
j + 1) in axial equilibrium are defined, where the 
sides of this element are 2Ar by 2Az. The two 
elements (i, j) and (i + 1, j + 1) possess a com- 
mon submass which is represented by the 
double crosshatched section in Fig. 2. If this 
submass is to be placed in equilibrium in the 
radial direction, it will be considered as a part 
of the element (i, j). It will be considered as a 
part of the element (i + 1, j + 1) when a force 
balance in the axial direction is made. The other 
three submasses of the element (i, j) will be con- 
sidered as parts of the elements (i - 1, j + l), 
(i - 1,j - 1) and (i + 1,j - 1) for purposes of 
axial equilibrium. The final result is that all the 
mass of the element (i,j) will be in equilibrium 
in both the radial and axial directions. 

Consider an axial force balance on the element 
(i + 1, j + 1) shown in Fig. 2. It is convenient to 
shift the indices so that it is now the node (i, j). 
The following equation results from satisfying 
equilibrium in the axial direction for this 
element, which has sides of 2Ar by 262. 
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y[a,(i + 1,j) - a,(i - 1, j)] + FTrz(i, j + 1) 
J +[y(l+c,&)- 

_ 
- $&(i,j - 1) = 0. 

(11) + [il’(l -C,-&)+ 

The strains which are necessary to satisfy the 
equilibrium conditions of a typical node (i, j) will 

+ Yzc2(ui+2,j + ui-2,j) 

now be defined. The strains must be defined at - 2 
the node (i, j) and also at adjacent nodes. 

1 + y%, - A+ 

Cl’ ui,j+2 
‘j 1 

Cl fir 
‘.i 1 

Ui,j-2 

- 2) 1 Ui,j = 0 (14) 

--. 

&,(I', j + 1) = [u(i, j + 2) - u(i, j)J/2Ar 

e,(i, j + 1) = [ 4i + 1, j + 1) - Mi - Lj + 1)1/2Az 

&i, j + 1) = [e&i, j + 2) + Eg(i, j)]/2 = 
4, j + 2) + u(U) (12) 

___ 2r, 
3+2 2rj 

y 

rz 

(i + 1 j) = w(i+ Lj + 1) - W + Lj - 1) + y(i + 2,j) - 4L.d 

2 2Ar ‘- 2A.z ’ 

The expression for the strains c,(i, j - l), c,(i, j - l), eg(i, j - 1) and y,,(i - 1, j) are obtained in a 
similar manner. Note that the expression for sdi,j + 1) is an average of the strain at two adjacent 
points. The strains s,(i, j) and e,(i, j), obtained through a similar averaging process, are : 

h(i, j) = 
eJi, j + 1) + E,(i,j - 1) u(i,j + 2) - u(i,j - 2) 

2’ 
= 

4Ar 

w(i+ 1,j +4) - w(i- 1,j + 1) + w(i+ 1,j - 1) - w(i-- 1,j - 1) 
E,(i,j) = -- 

4A.z - I 

Finally : 

s,(i, j + 1) + E,(i, j - 1) 
E,(i,j) = ~- 

2 (13) 

or 

se(i, j) = u(i, j);rj 

+ (l+$)+c29 

When the classical stress-strain relations are 
substituted into equations (10) and (11) and the 

x (%+l,j+l - “i-l,j+l) 

definitions of the strains as expressed by equa- 
tions (12) and (13) are utilized, the following 

+l~~(i-~)+C2~] 

equations result. If Ui,j is defined for a particular x t”i-l,j-1 - ui+l,j-l) 

value of i and j, the reader is reminded that wi, j 
is not defined at that point. +c2rj+rwij+2+c2~wij_2 

rj ’ rj ’ 

74’1 + c2)(wi+t,j+l - wi-l,j+l + Y2fwi+2,j + wi-Z,j) 

+ W-l,j-1 - Wi+l j-l) , . - 2[y2 + C,] wi,j = 0. (15) 
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A typical network of mass points and stress 
points as employed in the solution of the contact 
problem is shown in Fig. 3. The coh~mns are 
numbered from I through n and the rows are 

FIG. 3. The finite difference network. 

numbered from I through m. The dividing 
point of contact is between node (1, k) and node 
(1, k -t- 1). For the network shown in Fig. 3, 
k = 10, m = 6, n = 20, and the number of 
unknown displacements is 60. The circles 
represent n rows and the x’s represent u’rows. 

The finite difference forms which apply at the 
boundaries are given in Appendix 1 [23]. 

4. CALCULATfON PROCEDURE 

The finite difference equations were sofved 
using a direct elimination method with a value 
of v = 0.3. The effect of round-off error is 
negligible 1231. Figure 4 is a plot of the contact 
stress vs. r’ for a series of calculations in which 
the fineness of the network is progressively 
increased. Values of x = 5, L = 1, i = 0.3, 
N = 2, and equal values of m and n are used. 
Five degrees of fineness are employed, m = 10, 
16, 22, 28 and 34 (50 equations through 578 
equations). The truncation error effectively 
vanishes for a relatively coarse network. 

It was seen that CC is that value of i for which 
the contact stress C&Z, 0) is zero. The importance 
of the stress at the point (a, 0) is evident. How- 
ever, no stress point is present in the network 
shown in Fig. 3 to give this stress directly ; 
the point (a,O) is between two stress points 
where 6, can be calculated. Thus, the stresses 
within the contact region must be extrapolated 
to find the value at the point (a, 0) for a given 
value of [. 

Rodsal coardtnate, r’ 

FIG. 4. Contact stress for different values of grid fineness. 
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Two different extrapolation techniques were 
employed to determine a&,0) for an assumed 
value of 5. In the first method, a straight line was 
passed through G&X - 3Ar’, 0) and eZ(x - Ar’, 0) 
and extrapolated to x. (Actually, eZ is known 
only in terms of the dimensionless quantity 
bo,/Ed.) The second method is based upon the 
knowledge of the contact stress in the Hertz 
solution. The Hertz solution predicts an ellipti- 
cal shape for the contact stresses. In particular 
the slope da,(x, O)/dr + co. With this fact in 
mind, a parabola opening to the left with its 
major axis parallel to the line z’ = 0 was passed 
through the points bo,(x - 3Ar’, O)/Ed and 
bo,(x - Ar’, O)/Ed. It was demanded that the 
parabola be tangent to the line I’ = x. Two 
different values of bo,(x, O)/Ed result depending 
upon the extrapolation method. However there 
is little difference between the two methods 
when progressively finer grid sizes are employed 
and the results extrapolated to Ar = 0. 

The partial differential equations which define 
the contact problem are linear. Thus the contact 
stress gZ(r, 0) is a linear function of i for a fixed 
r. As a result, the requirement that bo,(a, O)/Ed 
be zero when [ = i, can be satisfied in a rela- 
tively simple manner. First, some value of [ is 
assumed and the quantity bo,(a, O)/Ed is 
determined. Repeating the process with a 
different [ gives a second value for bo,(a, O)/Ed. 
By using the linear relationship which exists 
between these four quantities, I& is calculated. 

5. RESULTS 

5.1 The range of validity of the Hertz solution 
51.1 Cylinders of infinite length. Figure 5 

shows a curve of [, vs. x for a long cylinder with 
a surface profile proportional to r2 and a similar 
curve showing the Hertz solution. The classical 
solution assumes that points on the surface of 
the sphere which make contact are displaced 
axially an amount which is also proportional 
to r2. Thus, a comparison of the two solutions 
is possible. 

The Hertz solution is valid if the contact 
area is small in comparison to the cylinder 

radius (i.e. x 4 1). The error in the use of the 
Hertz solution increases as a approaches b due 
to the presence of the load free sides of the 
cylinder. This trend is clearly exhibited in Fig. 5. 

I-4 

l-2 

i i 

Infinliely long cyclinder 

I.0 

x:o/b 

FIG. 5. The range of validity of the Hertz solution. 

If x is less than 3 the deviation between the 
classical solution and the numerical result is 
less than 7 per cent. The error in the use of 
Hertz’s solution reaches a maximum value of 
29 per cent when x = 1. 

The relationship between the constriction 
ratio and the macroscopic contact resistance 
for two similar regions is given by Clausing [24] 
in the form of the following equation. 

R* = (Al/b) = 2(10”‘“‘) 
L > 0.8 

, (16) 
0.16 < x <084 

where 

g(x) = 1.39839 - 744698 x + 19.9303 x2 

- 38.5897 x3 + 38.6553 x4 - 16.6247 x5. 

The quantity Al is the length of additional 
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material which would result in a resistance is 9 per cent. Clausing’s [5] statement of good 
equivalent to the resistance caused by the con- experimental agreement for values of .Y up to 
strictions at the interface. A dimensionless 0.65 seems justified. Hertz’s solution is quite 
conductance can be defined as : adequate for a tong cylinder of profile N = 2 

H* = l/R* 

where H* is effectively the Biot number. 
Curves of dimensionless conductance H* as 

a function of the elastic conformity modulus i 
are shown in Fig. 6. In the first case the Hertz 

8.0- 

7 a--- Using numertcal result for 

tnftniteiy long cylinder 

5 

6.0~- Using Hertz solution.__ 

FIG. 6. The influence of the load-free sides of the cylinder on 
the conductance. 

in the region where the contact resistance is 

large (.x < 0.4). 
5.1.2 Cylinders offinite length. Clausing [8] 

concluded that R*(L = 0.8)/R*(L --+ :x)deviates 
from unity by 0.4 per cent or less in most cases. 
For the thermal problem, a cylinder of length 
L = 0.8 may then be considered infinitely long. 
If L = 0.6, the deviation of the ratio from unity 
is 1.5 per cent or less. 

The influence of length on <, is given in 
Table 1 for the case of v = O-3 and N = 2. The 
ratio of <,(L):<,(L -+ X) is given in Table 2. To 

Table 1. Elastic corzformity modulus [, as a,funcrion of’x and 
Lfor the case of v = O-3, N = 2 

I_=- --~Z 

3 c 

-‘i\ L x 0.400 0,667 0.857 1 .oo 

0,600 0.0467 0.1759 0.4230 0,962 
1QOo 00589 0.2764 0~6560 1.276 
1.420 1,310 
1,667 0.2966 
1.676 0.7010 
1WO 0.0609 
2,200 0.0615 
2,333 0.2970 1.313 _ ~~~ 

--- ~___ x 0.0615 0.2970 0.7050 1,313 
.- -.._r- 

Table 2. The ratio [,(L)/I,(L + ~-8) as a function of x and 
L for the case of v = 0.3, N = 2 

solution is used to predict x from [, ; the second 
case uses the relationship between x and i 
which was obtained numerically. The later 
conductance curve is for an infinitely long 
cylinder with an initial profile described by 
N = 2. 

In the higher conductance range, errors of 
25 per cent or more will occur if Hertz’s solution 
is used to predict the contact area. If x = 0.65, 
the error caused by the use of Hertz’s solution 

T,(L), &(L + cc) 

.Y 

\ L 
0400 0667 0.857 1.00 

A- -.--.____ 
0.600 0.756 0.592 0.600 0.733 
1WJ 0953 0.931 0930 0.972 
1.420 0,998 
1.667 0,999 
1676 0.994 
1.800 o-992 
2~200 l-000 
2.333 1000 1GOO 

-.~ 



reduce the deviation of the ratio &(L)/i,( L -+ cc) 
from unity to 1 per cent or less requires a 
value of L of around 1%. At L = O-6, the devia- 
tion is approximately 30 per cent, which is in 
marked contrast to the result for the thermal 
problem. 

From these results a conductance H* vs. i, 
curve can be drawn in which J!, is a parameter 
{see Fig. 7). For the value of L = 0.6, the correc- 
tions to equation (16) which are given in [S] 

6.0 r 
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The macroscopic contact resistance greatly 
decreases as the length of the cylinder decreases. 
It should be remem~red, however, that the 
results are applicable to the case of a uniform 
load over the entire upper end of the cylinder. 
A boundary condition of a concentrated load 
may be appropriate for some short members. 

5.2 The i~~~e~ce of the surface geometry on the 
macroscopic contact area 

Figure X shows curves of [, vs. x for N = 1,2 
and 3 for a cylinder of length L = 1. For the 
case of N = 1, the contact surface is a cone with 

Y I I I I I 0 IO 20 r,*Ye 3 
I 

40 50 60 

FIG. 7. The influence of the cylinder length on the con. 
ductance. 

x=0/b 

FIG. 8. The effect of initial profile on (, 
were employed. These corrections require a 
multiplication of R*(L -+ co) by a factor of 
0.985 or greater, depending upon the value of x 

Figure 7 shows that for a given i,, the contact 
resistance decreases for small values of length, 
This reduction is almost entirely due to a 
decrease in rigidity of the cylinder; therefore, a 
larger constriction ratio results. Note that the 
conductances for L -+ co and L = 0.6 differ 
by 100 per cent or more. 

a tip of infinite curvature. Since the flatness 
deviation is several orders of magnitude smaller 
than the radius of the cylinder, plastic deforma- 
tion will be restricted to a relatively small 
region. Thus it is appropriate to employ an 
elastic analysis for this case. 

From Fig. 8 it is seen that if x is small, the 
flatter profiles yield lower values of 5,. For 
values of x near 1, just the opposite is true. 
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5,x IO2 

FIG. 9. The effect of initial profile on the conductance. 

Figure 9 shows the influence of the form of f(r) 
on the thermal conductance. For the lower 
values of i,, the profile described by N = 1 
results in the lowest conductance ; in the higher 
range of [,, the profile described by N = 3 
yields the lowest conductance. Note that the 
conductance curve for N = 2 does not always 
lie between the conductance curves for N = 1 
and N = 3. 

6. CONCLUSIONS 

The physical model of elastic continua which 
has been presented has proven to be an accurate 
and useful simulation. A large number of axi- 
symmetric contact problems can now be solved 
using this numerical technique. Although a 
uniform applied pressure was used in the calcula- 
tions, the method is applicable to more complex 
boundary conditions. A similar statement is true 
regarding the surface profiles. The actual surface 
profile of a real surface can be measured and 
the result used for the function f(r). The method 
of solution is, however, restricted to the case of 
one contact region and one non-contact region. 

The use of the Hertz solution will introduce 
an error of less than 9 per cent if the constriction 
ratio x is less than $. Thus for x less than 5 the 
effect of the nearness of the load free sides of the 
cylinder is small. This conclusion is true pro- 
vided the contact surface is in the form of a 
spherical cap and the cylinder length L = lib is 
1% or greater. 

The effect of the stress concentration due to 
the contact stress has dissipated at L = 1.8. 
For values of L less than 1.8 the assumption of 
uniform load is probably not realistic. The 
macroscopic contact resistance is significantly 
reduced for shorter cylinders in the range of 
0.6 < L < 1.8 if the boundary condition of 
uniform load over the entire upper surface is 
employed. Thus it is seen that thin members 
represent a different class of problems. The 
macroscopic contact resistance will be strongly 
influenced by the particular load distribution 
applied to a thin member. 

The geometry of the large scale surface 
waviness greatly influences the macroscopic 
contact resistance. This conclusion is true in 
all ranges of the conductance even for profiles 
which are relatively similar, such as f(r) oc rN 

where N = 1, 2 or 3. The resistance plots which 
results from two surface profiles, which repre- 
sent limiting surface geometries, will not always 
produce an effective bound on the thermal 
contact resistance. In any case, the maximum 
flatness deviation alone is insufficient to predict 
the resistance. The importance of the form of the 
large scale surface geometry indicates that 
another parameter should be added to the 
growing list of those quantities which influence 
the thermal contact resistance. 
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CONTACT AXIAL DE~YLINDRES GLAST~QUES AVECAPPLICATION A LA RBSISTANCE: 
THERMIQUE DE CONTACT 

R&m&-Des estimations de resistance thermique de contact ont 6ti: fortement restreintes parce que la 
surface de contact macroscopique entre deux elements finis ne peut pas btre dtterminte. On dbveloppe une 
nouvelle mtthode de resolution de ce probltme de contact en elasticin? laquelle est applicable a une large 
varibte de geometries et de conditions aux limites. On emploie un modele physique 21 parametre local% 
qui conduit a des equations aux differences finies en termes de d&placement. Des calculs obtenus par 
cette methode indiquent que de grandes erreurs dans I’estimation de la resistance thermique de contact 
peuvent etre rencontrees si des solutions pour des solides d’ttendue infinite sont utilisees pour des regions 
finies. De grandes erreurs sont specialement rencontrees si les ClCments sont minces. Les calculs montrent 
que la deviation maximale a la ptantite est insuffisante pour obtenir une estimation precise de la resistance 

de contact macroscopique. On peut aussi considerer la forme geometrique de surface &endue. 
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DER AXIALE KONTAKT ENDLICHER ELASTISCHERZYLINDER MIT 
ANWENDUNGAUFDENTHERMISCHENUBERGAN~~~~IDER~TAND 

Zusammenfassung-Die Bestimmung des makroskopischen therm&hen iibergangswiderstandes wurde 
dadurch sehr erschwert. dass die makroskopische Beriihrungsflache zwischen den Teilstiicken nicht erfaast 
werden konnte. Eine neue Losungsmethode dieses Kontaktproblems der Elastizitat wird entwickelt und 
auf eine grosse Anzahl van Geometrien und Randbedingungen angewandt. Ein physikalisches Teilpara- 
meter-Problem ist zugrundegelegt, aus dem die Gleichungen der endlichen Differenzen als Verschiebungs- 
grossen abgeleitet werden. Die Berechnungen nach dieser Methode zeigen, dass grosse Fehler in der Bestim- 
mung des thermischen ijbergangswiderstands moglich sind, wenn Liisungen fiir K&per unendlicher Aus- 
dehntmg auf endliche Bereiche angewandt werden. Besonders grosse Fehler konnen ftir diinnr Teilstticke 
auftreten. Die Rechnungen zeigen, dass die Maximalabwetchung van der Flachheit nicht zur genauen 
Bestimmung des makroskopischen fjbergangswiderstandes ausreicht. Die OberflPchcngeometrie im 

Grossen ist ebenfalls zu beriicksichtigen. 

OCEBOtl KOHTAHT KOHEYHbIX YHPYPMX HMJIHHAPOB 
B HPHMEHEHHM K COHPOTBBJIEHBIO TEHJIOROPO KOHTAHT.4 

AaaoTaqwsr-TeopeTllqecKIle paCseTbI COIIpOTPlBJIeHHH MaKpOCKOrIMqeCKOrO TeI,JIOBOrO 

KOHTaKTa CTpOrO OI-paH&WeHbI, TaK KaK HeJIb3H OtIpe~eJIMTb IIJIOuaJJb MaKpOCKOIIWleCKOI-0 

KOHTaKTa MeHcgy KOHe'lHbIMLl TeJIaML1. CO3~aH HOBbIti MeTOg pelIIeHHR 3TOti KOHTaKTHOti 

3aAaW J'IlpyrOCTM, KOTOpbIti MOH(eT 6bITb MCIIOJIb30BaH AJIfl TeJI pa3JIHYHbIX reOMeTpllli M 

pa3JIWJHbIX I'paHMYHbIX J'CJIOBLiff. kiCIIOJIb3yeTCR IjjI43WieCKaR KJ'COqHaFl MOaeJIb,C lIOMOII(blO 

KOTOpOZt BbIBeAeHbI YpaBHeHLlR B KOHeYHbIX pa3HOCTHX C J'YeTOM CMelqeHliH. PaCseTbI HO 

3TOMJ'MeTOay IIOKa3bIBaIOT,YTO 6onbmie OIIIllCiKR B OIIpefieJIeHHH COIIpOTHBneHMH TeIIJIOBOrO 

KOHTZlKTa MOIJ'T ITORBJIRTbCR, e&TIM peIIIeHI4R AJIR CJIJ'qaR 6eCKOHeVHbIX TeJI MCItOJIb3J'H)TCR B 

KOHe'IHLJX o6nacTHx. OCO6eHHO 6onbml?e OUIU6KH Ha6mOJ(amTCR B CJIJ'qae TOHKMX Ten. 

PaCqeTbI nOK33bIBalOT, qT0 MaKCPiMaJIbHOe OTKJIOHeHMe OT IIJIOCKOfi (POpMbI HeAOCTaTO'JHO 

ZZIfl TOqHOrO OIIpeJJeJIeHIUl COtIpOTMBJIeHMR MaKpOCKOIIM~eCKO~O KOHTaKTB. CJIeflyeT TBKH(e 

paCCMOTpeTb @OpMy IIOBepXHOCTR 6OJIbIIIOI'O MaCUITa6a. 


