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Abstract— Predictions of the macroscopic thermal contact resistance have been severely restricted because
the macroscopic contact area between finite members could not be determined. A new method of solution
to this contact problem in elasticity is developed which is applicable to a wide variety of geometries and
boundary conditions. A physical lumped-parameter model is employed from which the finite difference
equations in terms of displacement are derived. Calculations using this method indicate that large errors
in the prediction of the thermal contact resistance can result if solutions for bodies of infinite extent are
employed for finite regions of interest. Especially large errors may occur if the members are thin. The
calculations indicate that the maximum deviation from flatness is insufficient for an accurate prediction
of the macroscopic contact resistance. The form of the large scale surface geometry must also be considered.

NOMENCLATURE u, radial displacement ;
a, radius of the contact area; W, axial displacement ;
b, radius of the cylinder; X, constriction ratio, x = a/b;
C,,C,, defined by equation (4); z, axial coordinate.
4, flatness devmuox}_.;‘ Greek symbols
E, modulus of elastiCity ; . . . ,
f(r),  function describing the contact sur- S grd spacing ratio, y = Ar/Az;
face (see Fig. 1); Yrz> Sh?ar stra'm;
H*, dimensionless conductance ; & axial stramj
i, axial node index ; & deﬁn‘ed by ¢ = (pb/Ed);
i radial node in de); : £, elastic conformity modulus,
k, number of nodes along line (0,r), P 1 e L = (p.b/Ed);
¥ < x (see Fig. 3); 1’ gofar angle, .
L, dimensionless cylinder length ; i ¢ '1ned Py equation 2);
1, cylinder length ; v P.o isson's ratio;
m, number of axial nodes; o direct stress;
N, exponent in the function [ f{br')/d] = Trz shear stress.
r¥; Superscripts
n, number of radial nodes; ’, dimensionless quantities.
P, load;
P, contact load; 1. INTRODUCTION
P pressure; THE ADDITIONAL resistance to heat flow at the
Do contact pressure; interface between metallic members in contact
R¥*, dimensionless contact resistance ; has been the object of much study. Carfagno [1]
r, radial coordinate; conducted a review of the literature on thermal
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contact resistance and divided existing theories
into two categories. The first are theories based
on models which neglect relatively large-scale
waviness of surfaces. The surfaces are assumed
to be rough; but nominally flat. Examples are
models presented by Cetinkale and Fishenden
[2], Mikic and Rohsenow [3], and Laming [4].
The second category is the macroscopic con-
striction theory, initially presented by Clausing
and Chao [5, 6]. This model neglects surface
roughness to concentrate on the large scale
surface waviness and deviation from flatness.
They concluded that for many surfaces com-
monly encountered in engineering practice,
macroscopic influences appear to be dominant
when compared with microscopic effects, if
thick surface films are not present. This paper
applies the macroscopic approach to the case
where no conductive fluid is present at the
surface interface.

The determination of the additional tem-
perature drop due to the presence of a constric-
tion divides naturally into two parts: (i) given
the load, what is the macroscopic contact area?
and, (ii) given the macroscopic contact area,
what is the constriction resistance’ The conduc-
tion problem associated with Part (ii) has
received the most attention. A solution by
Roess [7] which is subject to certain geometric
limitations has been successfully employed. The
solution was also independently obtained by
Mikic [3]. This particular axisymmetric con-
duction problem has defied exact analytic
solution due to the mixed boundary conditions
which are involved. Clausing [8], however,
removed some of the previous restrictions using
a finite difference approach. An analysis of the
conduction problem associated with multiple
contacts is given by Cooper et al. [9]. Other
investigators have studied two dimensional
thermal constrictions in a plane geometry
[10, 11].

The first part, the prediction of the macro-
scopic contact area, is of fundamental impor-
tance in the calculation of the contact resistance.
The understanding of this portion of the problem
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lags behind that of the conduction problem
due to the complexity of the associated boundary
value problem in elasticity. The model proposed
by Clausing and Chao employed two elastic
cylinders with smooth spherical caps. They
assumed that the macroscopic contact area is
equal to the contact area formed between two
spheres whose radii are equal to the radii of the
spherical caps of the cylinders. The solution of
this classical elasticity problem was first given
by Hertz [12] and may be expressed in the form:

a=K(P)

where a is the contact radius, P, is the compres-
sive force and K is a constant dependent upen
the material and geometry of the contact
surfaces. This appears to be the only method
previously employed to calculate the macro-
scopic contact area. (Much study has, however,
been devoted to the prediction of the micro-
scopic contact area. This aspect of the problem
is discussed by Greenwood [13]. An extension
of the Hertz analysis to the case of rough
spheres is also provided by Greenwood and
Tripp [14])

Although the Hertz equation has proven
useful, the applicability is restricted. (i) The
derivation of the Hertz solution is based on a
geometry of infinite extent. The influence of the
nearby load-free sides of the cylinder will in-
troduce error if it is used for large contact areas.
(11) When the cylinder length is small, the Hertz
solution is invalid for similar reasons. This is a
severe restriction since many of the members
encountered in actual applications are thin.
(iii) The axisymmetric surface profile of the cap
of the cylinder is restricted to a spherical
shape. The method fails if the initial contact is
at the outer radius of the cylinder.

The contact problem of the theory of elasticity
has been studied extensively. The contributors
include the Russian authors Muskhelishvili
[15], Shtaerman [16], and Rostovtsev [17].
Extensions of the Hertz theory are provided by
Mindlin [18], Poritsky [19], and Smith and
Liu [20]. Much study has also been devoted to
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the punch problem wherein bodies of various
shapes are pressed into contact with elastic
half-spaces. A discussion of the mechanism of
the deformation of materials by wedges, which
includes both elastic and plastic effects, is given
by Hirst and Howse [21]. All of these authors
consider the stresses in regions of infinite extent.
The common assumption is that the contact
area is small compared to the other dimensions
of the body. An exception is the work of Sliter
[22]. He attempted unsuccessfully to apply the
method of point matching to the contact of a
plane region bounded by three perpendicular
straight lines and a fourth slightly curved line.
The influence of the nearby load-free sides of the
plane region was considered. A discussion of this
attempt is given by McNary [23].

The object of the paper is two-fold. (i) A more
general method is presented for the calculation
of the axial contact area between elastic cylinders
which have axisymmetric end surface profiles.
The method is applicable for large contact
areas, short cylinder lengths and arbitrary
axisymmetric loading, The surface profile is
arbitrary provided a single contact region
results. (it} The influence of some of the above
mentioned factors on the thermal contact
resistance is calculated. Included is the effect
of thin members and the effect of the large
scale surface waviness for a given flatness
deviation.

2. FORMULATION OF THE PROBLEM

The cross section of a solid cylinder, which is
composed of an elastic, isotropic material of
constant properties, is shown in contact with a
rigid half space in Fig. 1. The result for this case
is the same as if two identical cylinders were
pressed together. The cross section is symmetric
about the z axis and is bounded at the bottom
by the curved surface z = f(r). The form of f(r)
can be general if conditions are such that the
requirement of one contact region is met. The
number of contact regions is influenced by the
type of loading, the magnitude of the load, and
the cylinder length, as well as the function f(r).
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Unfortunately, real surfaces present a wide
variety of possibilities for the function f(r).
Results will be presented for f(r) oc r¥ where
N = 1,2 or 3. The function r? allows a compari-
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FiG. 1. Geometry of the axisymmetric stress problem.

son with the Hertz solution. The other two
cases illustrate the effect of changing the general
shape of the surface profile. The applied
pressure p, is assumed to be uniform. This
pressure is the apparent contact pressure.
Thermoelastic effects are omitted.

For the functions considered, the maximum
value of f(r) occurs when r is equal to the
cylinder radius b. This maximum value will be
called the flatness deviation d. The ratio of the
radius of the contact area, ‘a’, to the radius of
the contacting members, b, is an important
parameter which indicates the degree of the
constriction in the heat flow path. This quantity
is called the constriction ratio x, A dimensionless
cylinder length L is formed by the ratio, L = I/b,
where [ is the cylinder length.

It is assumed that the flatness deviation is
small compared to the other dimensions of the
body. The specimens used in the thermal contact
resistonce experiments of [5] have a one-in.
dia. and a typical flatness deviation of 80 p in.
Because the flatness deviation is several orders



1488

of magnitude smaller than the other dimensions,
the boundary conditions which exist along the
curve f(r) may be imposed along the line z = 0.

Attempts at analytic solution to either the
thermal constriction problem or the isothermal
elasticity problem have achieved little success
largely because of the mixed boundary condi-
tions along the line z = 0. A finite difference
numerical technique is then a logical approach.
Although it seems natural to consider the
pressure p, as the known and the contact
ratio x as the unknown, the reverse procedure
is more tractable. The method of solution vields
linear algebraic equations in terms of displace-
ment. These equations vary depending upon
what node, or point, is under consideration.
Since the boundary conditions on the lower end
are mixed, two general types of nodes result,
one for r < a and one for r > a. It is extremely
inconvenient when employing finite differences
not to know where one type ends and the other
type begins. Thus x is considered as the known
quantity and p, is determined.

The partial differential equations which apply
in the interior of the region and the stress
relations in terms of displacements are given
below [12]:

o M At (0w Fu)
Viu r2+&+2y<6raz 0zt)

A+uf{ou  10u a2w)
2 — J= 0
Viws u <8r82+r62+6z2
du w u
O, = (;&,+2y}g + 4 (5; + ;)
(1)
aw ou u
0’2:‘—(/1"}'2#)5—2—-{-2(54';)

ow
0z

=+ 2,1) + /1(5“

. <au+€’w
r 0z  or)

In these equations u is the radial displace-
w is the axial displacement; o,, ¢, and

ment;
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s are the normal stresses;
stress: and

7,, is the shear

vE

T+ (1 = 2v)

B @
F=ar+ vy
E is the modulus of elasticity and v is Poisson’s
ratio. To mtroduce dimensionless quantities,
we normalize by the flatness deviation 4, the
cylinder radius b, and the pressure p.

w o= wd 6, = 0,/p

u' = u/d Gy = Gg/D

r=r/b 0. = 6./p 3)
Z = z/b Tpe = Tp/P

L =1/b

The following notations are also convenient :

C, = A + 2

= W + 2up @)

The partial differential equations in dimen-
sionless form may be obtained from equation
(1) by replacing u, w, r and z with their respective
dimensionless counterparts. The dimensionless
relations between stress and displacement and
the boundary conditions in dimensionless form
are given below.

_(A+2p¢)d6u’ Ad 3w’+u’
=TT, bar pp\ez ¥
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The boundary conditions on the sides are:

a(1,2) =0
v A1,7) =0 } O0<7<L ©)
The boundary conditions on the upper end are:
afr,L)= —1
0, 1) = 0 } O<r<t 0
The boundary conditions on the lower end are:
o(r,0) <0
W(r',0) = —f(br’)/d} O<rs<x
a(r,0) =0 x<g<rgl 8)
7,,(r,0) =0 0grgl
%j@}t a.(r,0) = 0. 9

Equation (9) requires additional discussion.
Let us consider that the radius a is fixed and
that a uniferm pressure p, not necessarily equal
to p,, is applied to the cylinder. Let the function
Sf(r) be as previously described. If the pressure
p were zero, a self-equilibrant system of normal
stresses along the contact surface would be
required to satisfy the contact condition for
0 <r <a. This would require compression
over a portion of the contact region and tension
over the remainder. The tensile forces within
the contact region would become larger as the
point r = a is approached. If the pressure p is
some small positive value, the maximum tensile
stress is reduced. As the pressure p is further
increased, a value is reached at which a.(r, 0) for
the interval 0 < r < a is compressive in the
entire interval and the stress at r = a is zero
Thus, for some value of p the stress o,(a,0) is
zero. This is the desired value of the load, p,
Further increases in p cause a finite compressive
stress at r = a. The need for equation (9) is
now clear.

Let the dimensionless parameter { be defined
by the equation pb

= Zd
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When p equals p,, let { equal {. This quantity
is the elastic conformity modulus.

3. DERIVATION OF THE FINITE DIFFERENCE
EQUATIONS

The finite difference equations for the dis-
placements u and w are derived from a physical
model. The model is composed of a system of
discrete elements of lumped masses and springs,
in the arrangement shown in Fig, 2. The network
consists of alternating u rows and w rows. The
points at which the radial displacements u are
defined are shown as circles ; points of definition
of the axial displacements w are shown as x’s.
Along a u row only the displacement u and

Plan view

AB/2

Section at 8:0

X WowsT,,

Yiow 107 ,0,,0¢

i=lj il +
°i-2,/

Fi1G.2. Axisymmetric lumped-parameter model in cylindrical
coordinates.

only the normal stresses ¢, 6, and ¢, are defined.
Similarly, along a wrow, only the displacement
w and only the shear stress 7,, are defined.
The points of definition of displacement also
represent points of concentration of mass. The
forces which act on these mass points are
represented by springs. The springs locate
points at which stresses must be defined. Both
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mass points and stress points are ordered by
the indices i (which increases in the positive z
direction) and j (increases in the positive r
direction).

The network is divided into alternating types
of rows so that the items 02 w/dr 8z and d%u/0r 0z,
which appear in the radial and axial equilibrium
equations, respectively, may be represented with
greater accuracy. In a given displacement net-
work, the strains may be defined in terms of the
displacements in several ways. The definition
of the strains and the selection of a particular
network are two interdependent factors which
must be considered simultaneously if economy
of computational effort is to be achieved. Some
alternate methods of formulating the network
and of defining the strains are given in [23].

The derivation of the difference equations in
terms of displacements, for the interior and all
boundary nodes, consists of the following steps.
(i) Elements of mass are placed in static equi-
librium using the stresses and the appropriate
areas over which they act. (ii) The stresses are
eliminated using the classical stress-strain rela-
tionships. (iii) The strains are defined in terms
of the u and wdisplacements. When the strains
are substituted the final difference equation
results.

The equations which apply in the interior
will now be derived. Consider the forces which
act on the element (i, j). The sides of this element
are 2Ar and 2Az and the subtended angle is
AG/2. A force balance in the radial direction
gives the following result.

A
oli,j+1) (rjﬂ 702Az>
—_— o-r(i,j - 1) (rj—l ¥2AZ>
A8
+ [TrZ(i + 1’]) - rrz(i - 1’.])] <rj72Ar)

— adi,j) (2Ar .2Az. éz—q> =0.
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This reduces to:

g G+ 1) = Dl gij — 1)
J ¥
+ ’y[‘crz(i + la]) - Trz(i - 17])]
2A
- o) =0 (10)

J

where y = Ar/Az.

The preceding operation places the mass
represented by the element (i, ) in equilibrium
in the radial direction. This mass must also be
placed in equilibrium in the axial direction. The
latter operation cannot be accomplished directly
because the stresses which act on the element
(i,j) in the axial direction are undefined. For
example, at point (i + 1,j) in Fig. 2 the stress o,
is undefined; T,, is the only stress which is
defined at the location (i + 1,j). The necessary
stresses are undefined as a direct consequence of
dividing the network into alternating types of
rows.

However, from Fig. 2 it is noted that all the
stresses necessary to place the element (i + I,
j + 1)in axial equilibrium are defined, where the
sides of this element are 2Ar by 2Az. The two
elements (i, j} and (i + 1,j + 1) possess a com-
mon submass which is represented by the
double crosshatched section in Fig. 2. If this
submass is to be placed in equilibrium in the
radial direction, it will be considered as a part
of the element (i,j). It will be considered as a
part of the element (i + 1,j + 1) when a force
balance in the axial direction is made. The other
three submasses of the element (i, j) will be con-
sidered as parts of the elements (i — 1,j + 1),
(i—1,j—1)and (i + 1,j — 1) for purposes of
axial equilibrium. The final result is that all the
mass of the element (i, j) will be in equilibrium
in both the radial and axial directions.

Consider an axial force balance on the element
(i + 1,j + 1)shown in Fig. 2. It is convenient to
shift the indices so that it is now the node (i, j).
The following equation results from satisfying
equilibrium in the axial direction for this
element, which has sides of 2Ar by 2Az.



AXIAL CONTACT OF FINITE ELASTIC CYLINDERS 1491

r.:
. 1 N s 1’. }4-1 -,. 1 )
'}’[62(1 + ’]) o'z(l .])] + r; Trz(l I+ ) + Tit1 1+ C1 Ar — cléf U+
, T Ti+2 T
— 7l G- 1) =0. 1 i
r; b = 1) t i e (1 - C; Ar)+ C, é{}ue j-2
F; Fimz r; '

The strains which are necessary to satisfy the P2Cols s+ + 5 )
equilibrium conditions of a typical node (i, j) will T
now be defined. The strains must be defined at 2 [1 + 92C, — A—Z(C, - 2)] u,; =0 (14)
the node (i, j) and also at adjacent nodes. r; '

N 3
gli,j + 1) = [u(i,j + 2) — u(i, )}/24r
elij+ 1) =[wi+ Lj+1)— wi— 1j+ 1)]2Az
i) i 5
i + 1) = [adif + D) + o2 = I E 2 1) r 12
2riss 2r;
) LW+ Lj+ ) —wi+ 1,1 uli + 2,)) — uli,))
Vel + 1 J) = A + >As .

The expression for the strains ¢(i,j — 1), &,(i,j — 1), &i,j — 1) and 7,,(i — 1, ) are obtained in a
similar manner. Note that the expression for gfi,j + 1) is an average of the strain at two adjacent
points. The strains £}, j) and ¢,{i, j), obtained through a similar averaging process, are:

-

o s+ D+ el j— 1) ulij+2) —uli,j—2)
&li.)) = 2 = 4Ar
e (i ) _ gz(iaj + 1) + Sz(isj - 1)
AL = 3 L (13)
or
o wi+ Lj+1)—wi—Lj+ 1)+ wi+Lj—1)— wi—1,j—1)
sz(l’]) = 4Az
Finally:

89(17]) = u(iaj)//rj'

ykaé+m>+gmﬂ
Tirs Fj

When the classical stress—strain relations are X (Uieq io1 = Uimq 141)
substituted into equations (10) and (11) and the g o
el et
1AAS — 1+ C,

definitions of the strains as expressed by equa-
tions (12) and (13) are utilized, the following

equations result. If u, ; is defined for a particular X (Uimq,jo1 = Uiy, j~1)

value of i and j, the reader is reminded that w; ; Fivy rioy

is not defined at that point. + G —}r W,z + €y %Jr Wij~2
i i

WC, + C) (Wisy, ju1 ~ Wimt, ja1 + Yz(WH»z,j + Wioa,j5)

+ Wiq -1 — Wg+1,j—1) - 2[)’2 + C,] W= 0. (15)
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A typical network of mass points and stress
points as employed in the solution of the contact
problem is shown in Fig. 3. The columns are
numbered from 1 through n and the rows are

.
z

7.0 o) ==
N e .
e T T\’”’F‘f*ﬁss*ﬁs‘é‘m'”’
I L
44 42 43 | M9 150
u’=0 ETH>§—<>3—3-<>~~—<>——— ﬂb—{»—wﬁsg— ‘*25 ‘,7;1‘:(3
7,=0 o, =0
21 22| R 29 |30
Jm IENuRu RS
:W—»TE—QES o, Lo 5l %0
{ |
== { | } {4,
iz 3 (4] 3 10
7,:=0 i r’-0 rat
w'==flor'\/d | ’
r'=x »\’ o,=0

Fi1G. 3. The finite difference network.

numbered from 1 through m. The dividing
point of contact is between node (1, k) and node
{1,k + 1). For the network shown in Fig. 3,
k =10, m =6, n=20, and the number of
unknown displacements is 60. The circles
represent u rows and the x’s represent w rows.
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The finite difference forms which apply at the
boundaries are given in Appendix 1[23].

4. CALCULATION PROCEDURE

The finite difference equations were solved
using a direct elimination method with a value
of v = 03. The effect of round-off error is
negligible [23]. Figure 4 is a plot of the contact
stress vs. ¥’ for a series of calculations in which
the fineness of the network is progressively
increased. Values of x =2, L=1, { =03,
N == 2, and equal values of m and n are used.
Five degrees of fineness are employed, m = 10,
16, 22, 28 and 34 (50 equations through 578
equations}. The truncation error effectively
vanishes for a relatively coarse network.

It was seen that {, is that value of { for which
the contact stress o;(a, 0)is zero. The importance
of the stress at the point (a, 0) is evident. How-
ever, no stress point is present in the network
shown in Fig. 3 to give this stress directly;
the point {a,0) is between two stress points
where ¢, can be calculated. Thus, the stresses
within the contact region must be extrapolated
to find the value at the point (g, 0) for a given
value of .

Radial coordinate, '

0 O Q-2 03 G4 Q5 06 o7
T ] I T T I i 1
L-03 0/b-0667|
m
~0Q-21— o 10
a 16 !
& 22
® 28
-0-4- X 34 /‘
X
) o
5“* ~0-6 /
YR }/
sl
))/X
-0-8f— /Vx
X
ﬁx,.a&—"g'
L Kl D X B
—i.0

FiG. 4. Contact stress for different values of grid fineness.
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Two different extrapolation techniques were
employed to determine ¢, (a, 0) for an assumed
value of {. In the first method, a straight line was
passed through o,(x — 3Ar’,0)and 6,(x — Ar,0)
and extrapolated to x. (Actually, o, is known
only in terms of the dimensionless quantity
bo,/Ed.) The second method is based upon the
knowledge of the contact stress in the Hertz
solution. The Hertz solution predicts an ellipti-
cal shape for the contact stresses. In particular
the slope da,(x, 0)/dr » co. With this fact in
mind, a parabola opening to the left with its
major axis parallel to the line z' = 0 was passed
through the points bo,(x — 3Ar', 0)/Ed and
ba,(x — Ar', 0)/Ed. Tt was demanded that the
parabola be tangent to the line r = x. Two
different values of bo (x, 0)/Ed result depending
upen the extrapolation method. However there
is little difference between the two methods
when progressively finer grid sizes are employed
and the results extrapolated to Ar = 0.

The partial differential equations which define
the contact problem are linear. Thus the contact
stress o,(r, 0) is a linear function of { for a fixed
r. As a result, the requirement that bo(a, 0)/Ed
be zero when { = (. can be satisfied in a rela-
tively simple manner. First, some value of { is
assumed and the quantity bo,(a, 0)/Ed is
determined. Repeating the process with a
different { gives a second value for bo,(a, 0)/Ed.
By using the linear relationship which exists
between these four quantities, {, is calculated.

5. RESULTS

5.1 The range of validity of the Hertz solution

5.1.1 Cylinders of infinite length. Figure 5
shows a curve of {, vs. x for a long cylinder with
a surface profile proportional to r? and a similar
curve showing the Hertz solution. The classical
solution assumes that points on the surface of
the sphere which make contact are displaced
axially an amount which is also proportional
to r2. Thus, a comparison of the two solutions
is possible.

The Hertz solution is valid if the contact
area is small in comparison to the cylinder
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radius (i.e. x <€ 1). The error in the use of the
Hertz solution increases as a approaches b due
to the presence of the load free sides of the
cylinder. This trend is clearly exhibited in Fig. 5.

Infinitely long cyclinder

A O«BL—
BYAY
,:; Hertz solution

0-6—

04

| |
o] 02 0-4 06 08 1-0
xza/b

F1G. 5. The range of validity of the Hertz solution.

If x is less than % the deviation between the
classical solution and the numerical result is
less than 7 per cent. The error in the use of
Hertz’s solution reaches a maximum value of
29 per cent when x = 1.

The relationship between the constriction
ratio and the macroscopic contact resistance
for two similar regions is given by Clausing [24]
in the form of the following equation.

R* = (Al/b) = 2(10%%), { L>08 }(16)
016 < x <084

where

g(x) = 1-39839 — 744698 x + 19-9303 x?
— 385897 x* + 386553 x* — 166247 x°.

The quantity Al is the length of additional
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material which would result in a resistance
equivalent to the resistance caused by the con-
strictions at the interface. A dimensionless
conductance can be defined as:

H* = 1/R*

where H* is effectively the Biot number.

Curves of dimensionless conductance H* as
a function of the elastic conformity modulus {,
are shown in Fig. 6. In the first case the Heriz

8»OF

7.0k Using numerical result for
infinitely iong cylinder -

6-Ok— Using Hertz solution—__

H*E

3-0p-

Dimensionless conductance,

2-0p-

o] 10 20 30 40 50 80
;.x10?

FiG. 6. The influence of the load-free sides of the cylinder on
the conductance.

solution is used to predict x from {, ; the second
case uses the relationship between x and ¢,
which was obtained numerically. The latter
conductance curve is for an infinitely long
cylinder with an initial profile described by
N =2

In the higher conductance range, errors of
25 per cent or more will occur if Hertz’s solution
is used to predict the contact area. If x = 0-65,
the error caused by the use of Hertz’s solution

ORLO MCNARY

is 9 per cent. Clausing’s [5] statement of good
experimental agreement for values of x up to
0-65 seems justified. Hertz’s solution is quite
adequate for a long cylinder of profile N =2
in the region where the contact resistance is
large (x < 0-4).

5.1.2 Cylinders of finite length. Clausing [8]
concluded that R¥(L. = 0-8)/R*(L — o0)deviates
from unity by 04 per cent or less in most cases.
For the thermal problem, a cylinder of length
L = 0-8 may then be considered infinitely long.
If L = 0-6, the deviation of the ratio from unity
is 1-5 per cent or less.

The influence of length on (. is given in
Table 1 for the case of v = 0-:3 and N = 2. The
ratio of {{L)/{{L — oc)1s given in Table 2. To

Table 1. Elastic conformity modulus {. as a function of x and
L for the case of v = 03, N = 2

Se

0-400 0-667 0-857 1-00

- 0-0467 0-1759 0-4230 0-962
1-000 00589 0-2764 0-6560 1276
1-420 1-310
1-667 02966
1-676 0-7010
1-800 0-0609
2200 00615
2:333 0-2970 1-313

% 00615 0-2970 07050 1-313

Table 2. The ratio { (LY (L — ) as a function of x and

L for the case of v =03, N = 2

SULY L > )

L 0-400 0-667 0-857 100
0-600 0756 0-592 0-600 0-733
1-000 0-953 0-931 0930 0-972
1-420 0-998
1-667 0999
1-676 0-994
1-800 0-992
2:200 1-000
2333 1:000 1-000




AXIAL CONTACT OF FINITE ELASTIC CYLINDERS

reduce the deviation of the ratio {(L)/{ (L — o)
from unity to 1 per cent or less requires a
value of L of around 1-8. At L = (-6, the devia-
tion is approximately 30 per cent, which is in
marked contrast to the result for the thermal
problem.

From these results a conductance H* vs, {,
curve can be drawn in which L is a parameter
{see Fig. 7). For the value of L = 0-6, the correc-
tions to equation (16) which are given in [8]

80—

7-0—

H*
e
o
I

~

S

40}

3-0f—

Dimensionless conductance,

2-0—

|-o%

L.x10?

Fic. 7. The influence of the cylinder length on the con-
ductance.

were employed. These corrections require a
mautltiplication of R*L — o) by a factor of
0-985 or greater, depending upon the value of x-

Figure 7 shows that for a given {_, the contact
resistance decreases for small values of length.
This reduction is almost entirely due to a
decrease in rigidity of the cylinder; therefore, a
larger constriction ratio results. Note that the
conductances for L - oo and L = 0-6 differ
by 100 per cent or more.
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The macroscopic contact resistance greatly
decreases as the length of the cylinder decreases.
It should be remembered, however, that the
results are applicable to the case of a uniform
load over the entire upper end of the cylinder.
A boundary condition of a concentrated load
may be appropriate for some short members.

5.2 The influence of the surface geometry on the
macroscopic contact area
Figure 8 shows curves of {, vs. xfor N = 1,2
and 3 for a cylinder of length L = 1. For the
case of N = 1, the contact surface is a cone with

18
xN=3

4

e
08—
Nt
08—
Cylinder length L=
v=0-3
0-4
o2

) 02 04 0'6 o!s 70
x=0/b
F1G. 8. The effect of initial profile on {,.

a tip of infinite curvature. Since the flatness
deviation is several orders of magnitude smaller
than the radius of the cylinder, plastic deforma-
tion will be restricted to a relatively small
region. Thus it is appropriate to employ an
elastic analysis for this case.

From Fig. 8 it is seen that if x is small, the
flatter profiles yield lower values of {. For
values of x near 1, just the opposite is true.
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30

Dimensioniess conducionce,

Cylinder length
/ L=1,v=03

| | | | | J

L.x10°

F1G. 9. The effect of initial profile on the conductance.

Figure 9 shows the influence of the form of f(r)
on the thermal conductance. For the lower
values of {, the profile described by N =1
results in the lowest conductance; in the higher
range of (., the profile described by N =3
yields the lowest conductance. Note that the
conductance curve for N = 2 does not always
lie between the conductance curves for N = 1
and N = 3,

6. CONCLUSIONS

The physical model of elastic continua which
has been presented has proven to be an accurate
and useful simulation. A large number of axi-
symmetric contact problems can now be solved
using this numerical technique. Although a
uniform applied pressure was used in the calcula-
tions, the method is applicable to more complex
boundary conditions. A similar statement is true
regarding the surface profiles. The actual surface
profile of a real surface can be measured and
the result used for the function f(r). The method
of solution is, however, restricted to the case of
one contact region and one non-contact region.

ORLO MCNARY

The use of the Hertz solution will introduce
an error of less than 9 per cent if the constriction
ratio x is less than 4. Thus for x less than £ the
effect of the nearness of the load free sides of the
cylinder is small. This conclusion is true pro-
vided the contact surface is in the form of a
spherical cap and the cylinder length L = /b is
1-8 or greater.

The effect of the stress concentration due to
the contact stress has dissipated at L = 1-8
For values of L less than 1-8 the assumption of
uniform load is probably not realistic. The
macroscopic contact resistance is significantly
reduced for shorter cylinders in the range of
06 < L < 1-8 if the boundary condition of
uniform load over the entire upper surface is
employed. Thus it is seen that thin members
represent a different class of problems. The
macroscopic contact resistance will be strongly
influenced by the particular load distribution
applied to a thin member.

The geometry of the large scale surface
waviness greatly influences the macroscopic
contact resistance. This conclusion is true in
all ranges of the conductance even for profiles
which are relatively similar, such as f(r) oc r¥
where N = 1, 2 or 3. The resistance plots which
results from two surface profiles, which repre-
sent limiting surface geometries, will not always
produce an effective bound on the thermal
contact resistance. In any case, the maximum
flatness deviaticn alone is insufficient to predict
the resistance. The importance of the form of the
large scale surface geometry indicates that
another parameter should be added to the
growing list of those quantities which influence
the thermal contact resistance.
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CONTACT AXIAL DE CYLINDRES ELASTIQUES AVEC APPLICATION A LA RESISTANCE
THERMIQUE DE CONTACT

Résumé—Des estimations de résistance thermique de contact ont été fortement restreintes parce que la
surface de contact macroscopique entre deux éléments finis ne peut pas étre déterminée. On développe une
nouvelle méthode de résolution de ce probléme de contact en élasticité laquelle est applicable a une large
variété de géométries et de conditions aux limites. On emploic un modéle physique & paramétre localisé
qui conduit & des équations aux différences finies en termes de déplacement. Des calculs obtenus par
cette méthode indiquent que de grandes erreurs dans I’estimation de la résistance thermique de contact
peuvent &tre rencontrées si des solutions pour des solides d'étendue infinite sont utilisées pour des régions
finies. De grandes erreurs sont spécialement rencontrées si les éléments sont minces. Les calculs montrent
que la déviation maximale a la planéité est insuffisante pour obtenir une estimation précise de la résistance
de contact macroscopique. On peut aussi considérer la forme géométrigue de surface étendue,
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DER AXJALE KONTAKT ENDLICHER ELASTISCHER ZYLINDER MIT
ANWENDUNG AUF DEN THERMISCHEN UBERGANGSWIDERSTAND

Zusammenfassung—Die Bestimmung des makroskopischen thermischen Ubergangswiderstandes wurde
dadurch sehr erschwert, dass die makroskopische Berithrungsflache zwischen den Teilstiicken nicht erfasst
werden konnte. Eine neue Losungsmethode dieses Kontaktproblems der Elastizitit wird entwickelt und
auf eine grosse Anzahl von Geometrien und Randbedingungen angewandt. Ein physikalisches Teilpara-
meter-Problem ist zugrundegelegt, aus dem die Gleichungen der endlichen Differenzen als Verschiebungs-
grossen abgeleitet werden. Die Berechnungen nach dieser Methode zeigen, dass grosse Fehler in der Bestim-
mung des thermischen Ubergangswiderstands méglich sind, wenn Losungen fiir Kérper unendlicher Aus-
dehnung auf endliche Bereiche angewandt werden. Besonders grosse Fehler konnen fiir diinne Teilstiicke
auftreten. Die Rechnungen zeigen, dass die Maximalabweichung von der Flachheit nicht zur genauen
Bestimmung des makroskopischen Ubergangswiderstandes ausreicht. Die Oberflichengeometric im
Grossen ist ebenfalls zu beriicksichtigen.

OCEBOI KOHTAKT HOHEYHBIX VIPYI'UX HUJUHIPOB
B NPUMEHEHNU K COIIPOTUBJIEHUNIO TEIIJIOBOI'O KOHTAKTA

Annoramua—Teopernueckne pacdeTsl CONPOTUBIEHUH MAKPOCKONMUYECKOrO TEILIOBOIO
KOHTAKTA CTPOr0 OrpAaHMYEHBl, TAK KAK HeJb3f ONpeIesUTh IIOMANb MAKPOCKONMYECKOro
KOHTAKTA MeIy KOHEeYHRIMU Tenamu. Co37aH HOBBIA MeTO] peHIEHWA 3STOH KOHTAKTHOM
3aJau YOpPYrocTH, KOTOPHIA Mo)keT OHITh HCIOJIB30BAH JJIA TEJ DPA3IUYHHX FeOMeTpHit N
Pa3IMYHBIX I'PAHUYHBIX ycioBuii. Mcnonbp3yerca ¢uanyeckas KycOYHas MOJENb, C IIOMOLIbIO
KOTOpOil BBIBEJ[EHBl YPABHEHHA B KOHEYHBIX PA3HOCTAX C YYETOM CMemleHMA. PacueTsl mo
9TOMY METOJY MOKASHBAIOT, 4T (OJIbllMe OIMOKM B ONpeAeSIEHNH COIIPOTHBIEHUA TEIJIOBOTO
KOHTAKTA MOTYT IOABIATLCA, ECAM PEIeHNA [JIA CIy4an 0ECKOHEYHBIX TeJ UCIOJb3YIOTCH B
KOHeuHHX obaactax. OcobeHHO Ooabmive OmuUOKU HAGIIONAITCA B Clydae TOHKUX TeJ.
PacueTsl MOKABBIBAKT, UTO MAKCUMAJLHOE OTKJIOHEHUE OT ILIOCKOH (OPMBI HEZOCTATOYHO
JJIA TOYHOTO ONpedeseHUA COMPOTHBIGHUA MAKPOCKOIHYeCKOro KoHrakTa. CiemyeT Takke
paccmoTpers opMy noBepxuocTH Gosbmroro macmrraba.



